CONSTRUCTION

USB Controlled

Stepper Motor Interface

MUDIT AGARWAL

wm USB Based Stepper Motor Control by Electronics Make

The Universal Serial Bus is one of the most common
interfaces used in electronic consumer products
today, including PCs, cameras, GPS devices, MP3
players, modems, printers, and scanners etc. The
USB was originally developed by Compagq,
Microsoft, Intel, and NEC, and later by Hewlett-
Packard, Lucent, and Philips as well. These compa-
nies eventually formed the nonprofit corporation
USB Implementers Forum Inc. to organize the
development and publication of USB specifications.
In this article we shows how to control a stepper
motor with a USB port of a PC with the help of PIC
microcontroller.

The USB is a high-speed serial interface that can
also provide power to devices connected to it. A
USB bus supports up to 127 devices connected
through a four-wire serial cable of up to three or
even five meters in length. Many USB devices can
be connected to the same bus with hubs, which can
have 4, 8, or even 16 ports. A device can be
plugged info a hub which is plugged into another
hub, and so on.

USB Signal

USB signals are bi-phase, and signals are sent from
the host computer using the NRZI data encoding
technique. In this technique, the signal levels
inverted for each change to a logic 0. The signal
level for a logic 1 is not changed. A O bit is “stuffed”
after every six consecutive ones in the data stream to
make the data dynamic (this is called bit stuffing
because the extra bit lengthens the data stream). A
packet of data transmitted by the host is sent to every
device connected to the bus, traveling downward
through the chain of hubs. All the devices receive
the signal, but only one of them, the addressed one,
accepts the data. Conversely, only one device at
any time can transmit to the host, and the data
travels upward through the chain of hubs until it
reaches the host. USB devices attached to the bus
may be full-custom devices, requiring a full-custom
device driver, or they may belong to a device class.

MUDIT AGARWAL

EM JESTED

Deviced classes enable the same device driver to be

used for several devices having similar
functionalities. For example, a printer device has the
device class 0x07, and most printers use drivers of
thistype.

Endpoint: An endpoint is either a source or a sink
of data. A single USB device can have a number of
endpoints, the limit being sixteen IN and sixteen
OUT endpoints.

Transaction: A fransaction is a transfer of data on
the bus.

Pipe: A pipe is a logical data connection between
the host and an endpoint.

USB States

Idle: The bus is in idle state when the pulled-up line
is high and the other line is low. This is the state of
the lines before and after a packet transmission.
Detached: When no device is connected to the
bus, the host sees both lines as low.

Attached: When a device is connected to the bus,
the host sees either D+ or D go to logic high,
which means a device has been plugged in.

J state: The same as idle state.

K state: The opposite of J state.

SEO: The single ended zero state, where both lines
on the bus are pulled low.

CONSTRUCTION

wle

RST

— - . = =
%I % @ % A o
va— T “g4io £ N
@ = 1
- A = A ‘D 7 AR
PC Phase Phase Phase Phase
D 2 inding| (winding} jwinding indiny
GND— |
- < || b) D D D
o - b0 || S8 q s d s olf<s
IR 2 oT > | at Q2 a3 [a4
= q 33

D6 o,
D 5 i
R2 R3 R4 R5

18 f—— 1
+* 2
12 13 14 3 - C1: c2 c3
230V D3 D4

D2 D1 —I I3

pie

AC. ‘|’ - -
=

Fig. 1.Circuit Diagram of USB controlled Stepper Motor Interface

SE1: The single ended one state, where both lines
on the bus are high. SE1 is an illegal condition on
the bus; it must never be in this state.

Reset: When the host wants to communicate with a
device on the bus, it first sends a “reset” condition
by pulling low both data lines (SEO state) for at
least10ms.

EOP: The end of packet state, which is basically an
SEOQ state for 2 bit times, followed by a J state for 1
bittime.

Keep alive: The state achieved by EOP Keep alive
is sent at least once every millisecond to keep the
device from suspending.

Suspend: Used to save power, suspend is
implemented by not sending anything to a device
for 3ms. A suspended device draws less than
0.5mA from the bus and must recognize reset and

Sync| PID | ADDR|ENDP|CRC |EOP
8 bits | 7 bits |4 bits | 5 bits

resume signals.

Resume: A suspended device is woken up by
reversing the polarity of the signal on the data lines
for at least 20ms, followed by a low-speed EOP
signal.

Data Transmission

Data is transmitted on a USB bus in packets. A
packet starts with a sync pattern to allow the
receiver clock to synchronize with the data. A
packet identifier (PID) byte immediately follows the
sync field of every USB packet. A PID itself is 4 bits
long, and the 4 bits are repeated in a comple-
mented form. There are seventeen different PID
values There are four packet formats, based on

PID Type PID name | Bits Description

Token ouT 11100001 Host to device transaction
IN 01101001 Device to host transaction
SOF 10100101 Start of frame
SETUP 00101101 Setup command

Data DATAO 11000011 Data packet PID even
DATA1 01001011 Data packet PID odd
DATA2 10000111 Data packet PID high speed
MDATA 00001111 Data packet PID high speed

Handshakel ACK 11010010 Receiver accepts packet
NAK 01011010 Receiver does not accept packet
STALL 00011110 Stalled
NYET 00111100 No response from receiver

Special PRE 00111100 Host preample
ERR 01111000 Split transaction error
SPLIT 01111000 High speed split transaction
PING 10110100 High speed flow control
Reserved | 11110000 Reserved

which PID is at the start of the packet: token
packets, data packets, handshake packets, and
special packets.

Enumeration

When a device is plugged into a USB bus, it
becomes known to the host through a process

CONSTRUCTION

called enumeration. The steps of enumeration
are, When a device is plugged in, the host
becomes aware of it. The host sends a USB reset
signal to the device o place the device in a known
state. The reset device responds to address 0. The
host sends a request on address O to the device to
find out its maximum packet size using a Get
Descriptor command. The device responds by
sending a small portion of the device descriptor.
The host sends a USB reset again. The host
assigns a unique address to the device and sends
a Set Address request to the device. After the
request is completed, the device assumes the new
address. At this point the host is free to reset any
other newly plugged-in devices on the bus. The
host sends a Get Device Descriptor request to
retrieve the complete device descriptor, gathering
information such as manufacturer, type of device,
and maximum control packet size. The host
sends a Get Configuration Descriptors request to
receive the device's configuration data, such as
power requirements and the types and number of
interfaces supported. The host may request any
additional descriptors from the device.

The most common USB descriptors are:

Device descriptors, Configuration descriptors Fig. 2. PCB Layout of USB controlled Stepper Motor Interface.
Interface descriptors, HID descriptors, Endpoint (929 of actual size)

descriptors. Here i cannot discuss all these things
because of space limitation. and RC5 (pin 24) are used for USB interface. RC4 is

PIC18F4550 microcontroller is use for USB ‘ the USB data D_ pin, and RC5 is the USB data D+
communication with PC. PORTC pins RC4 (pin 23) pin. Internal pull-up resistors are provided which
can be disabled (setting UPUEN
a4 =0) if desired and external pull-
up resistors can be used instead.
] 318 |J0p3ubio For full-speed operation an
infernal or external resistor
should be connected to data pin
D+, and for low-speed opera-
tion an internal or external
0 resistor should be connected to
data pin D-. Operation of the
USB module is configured using
three control registers, and a
total of twenty-two registers are
used to manage the actual USB
transactions The operation of
A the USB link requires the
microcontroller to keep the
connection alive by sending
keep-alive messages to the PC
every several milliseconds. This
is achieved by setfting up a timer
interrupt service routine using

LED4

R93.3K
D2
3K
LED1
3.3K

2

X1 8MHZ
Ccé

22pf22pf @.1uf

07

4007

1N4007

3+
0.1uf

1 1N4007

12VAC

Fig. 3.Component Layout of USB controlled Stepper Motor Interface.
(92% of actual size)

CONSTRUCTION

TIMER O. Timer TMROL is reloaded and timer
interrupts are re-enabled just before returning from
the interrupt service routine. Inside the main
program PORTB is defined as digital I/O and TRISB
is cleared to 0 so all PORTB pins are outputs. All the
interrupt registers are then set to their power-on-
reset values for safety. The timer interrupts are then
set up. The timer is operated in 8-bit mode with a
prescaler of 256. Although the crystal clock

The Software Running On Microcontroller

frequency is 8MHZ, the CPU is operated with a
48MHz clock, by enabling its PLL. Selecting a timer
value of TMROL = 100 with a 48MHz clock gives
timer interrupt intervals of 3.3ms.

Circuit Diagram of USB controlled Stepper Motor
Interface is show in fig. 1. PCB layout of USB
controlled Stepper Motor Interface is show in fig. 2.
Component layout of USB controlled Stepper
Motor Interface is show in fig. 3.

Unsigned char Read_buffer[64];

unsigned char Write_buffer[64];

unsigned charnum;

unsigned char const HID_INPUT_REPORT_BYTES
=1;

unsigned char const HID_OUTPUT_REPORT_BYTES
=1;

unsigned char const HID_FEATURE_REPORT_BYTES
=2;

unsigned char const NUM_ENDPOINTS =
2;

unsigned char const ConfigDescr wTotallength =
USB_CONFIG_DESCRIPTOR_LEN +
USB_INTERF_DESCRIPTOR_LEN
USB_HID_DESCRIPTOR_LEN
(NUM_ENDPOINTS
USB_ENDP_DESCRIPTOR_LEN);

unsigned char const HID_ReportDesc_len

47;

unsigned char const Low_HID_ReportDesc_len =
HID_ReportDesc_len;

unsigned char const High_HID_ReportDesc_len =
HID_ReportDesc_len >>8;

unsigned char const Low_HID_PACKET_SIZE
HID_PACKET_SIZE;

unsigned char const High HID_PACKET_SIZE

et

HID_PACKET SIZE >>8;

unsigned char const
DeviceDescr[USB_DEVICE_DESCRIPTOR_LEN*2]

USB_DEVICE_DESCRIPTOR_LEN, O,

USB_DEVICE_DESCRIPTOR_TYPE, 0,

0x00, 0,0x02, 0,0x00, 0,0x00, 0, 0x00, O,

EPO_PACKET_SIZE, 0,0x34, 0,0x12, 0,0x01, 0O,

0x00, 0,

0x01, 0,0x00, 0, 0x01, 0, 0x02, 0,0x00, 0,0x01, O

I8

unsigned char const

ConfigDescr[USB_CONFIG_DESCRIPTOR_LEN*2]

={

USB_CONFIG_DESCRIPTOR_LEN, O,

USB_ CONFIG_DESCRIPTOR TYPE, O,
ConfigDescr_wTotallength, O,

0x00,0, 0x01,0, 0x0T,0,0x00, 0,0xA0, 0,50, 0
b

Option Explicit

Declare Function hidConnect Lib "mcHID.dII" Alias
"Connect" (ByVal pHostWin As Long) As Boolean
Declare Function hidDisconnect Lib "mcHID.dII" Alias
"Disconnect" () As Boolean

Declare Function hidGetltem Lib "mcHID.dII" Alias
"Getltem" (ByVal pIndex As Long) As Long

Declare Function hidGetltemCount Lib "mcHID.dII"

unsigned char const
InterfaceDescr[USB_INTERF DESCRIPTOR _LEN*2]
={
USB_INTERF_DESCRIPTOR_LEN, O,
USB_INTERFACE_DESCRIPTOR _TYPE, O,
0x00, 0, 0x00, 0, NUM_ENDPOINTS, 0,0x03, O,
0x00, 0, 0x00, 0, 0x00, 0};
unsigned char const
HID_Descriptor[USB_HID_DESCRIPTOR LEN*2] =

{

USB_HID_DESCRIPTOR_LEN, 0,
USB_HID_DESCRIPTOR_TYPE, O,

0x01,0, 0x01,0,0x00,0,0x01, 0, 0x22, O,
Low_HID ReportDesc_len,
0,High_HID_ReportDesc_len, 0};

unsigned char const

EP1_RXDescr[USB_ENDP_DESCRIPTOR_LEN*2] =

{

USB_ENDP_DESCRIPTOR_LEN, 0,
USB_ENDPOINT_DESCRIPTOR_TYPE, O,
0x81,0,USB_ENDPOINT_TYPE_INTERRUPT, O,
Low HID PACKET SIZE,
0,High HID PACKET SIZE,0,0};

unsigned char const
EP1_TXDescr[USB_ENDP_DESCRIPTOR_LEN*2] =

{

USB_ENDP_DESCRIPTOR_LEN, O,
USB_ENDPOINT_DESCRIPTOR_TYPE, O,
0x01,0,USB_ENDPOINT_TYPE_INTERRUPT, O,

Low HID PACKET SIZE, O,HID_PACKET SIZE, O,1,
0};

unsigned char const
HID_ReportDesc[HID_ReportDesc_len*2] = {0x06,
0,0xA0, 0,

OxFF, 0,0x09, 0,0x01, 0,0xA1, 0,0x01, 0,0x09,
0,0x03, 0,0x15, 0,0x00, 0,0x26, 0,0x00, 0,0xFF,
0,0x75,0,0x08, 0,0x95, 0,
HID_INPUT_REPORT_BYTES, 0,0x81, 0, 0x02,
0,0x09,0,

0x04, 0,0x15, 0,0x00, 0,0x26, 0, 0x00, 0,0xFF,
0,0x75,0,

0x08, 0,0x95, 0,HID_OUTPUT_REPORT_BYTES, 0,
0x91, 0, 0x02, 0,0x09, 0, 0x05, 0,0x15, 0,0x00,
0,0x26, 0,0x00, 0,0xFF, 0,0x75, 0,0x08, 0,0x95,
0,HID_FEATURE_REPORT BYTES,0,0xB1, O, 0x02,
0,0xC0, 0};

Alias "GetltemCount" () As Long

Declare Function hidRead Lib "mcHID.dII" Alias
"Read" (ByVal pHandle As Long, ByRef pData As Byte)
As Boolean

Declare Function hidWrite Lib "mcHID.dII" Alias
"Write" (ByVal pHandle As Long, ByRef pData As Byte)
As Boolean

Declare Function hidReadEx Lib "mcHID.dII" Alias

unsigned char const LanglDDescr[8] = {0x04, 0,
USB_STRING_DESCRIPTOR TYPE, 0,0x09, 0,0x04,
0};

unsigned char const ManufacturerDescr[24] = {12,

0,

USB_STRING DESCRIPTOR_TYPE,0, M, 0,0,0,
v,0,0,0, d,0,0,0, 40,00, 0,00}
unsigned char const ProductDescr[32] = { 16, 0,
USB_STRING_DESCRIPTOR_TYPE, 0, ‘A, 0,0,0,
'9,0,0,0,,0,0,0,%,0,0,0,%,0,0,0,'d,0,0,
0,',0,0,0};

unsigned char const StrtUnknownDescr[4] = {
2,0,USB_STRING_DESCRIPTOR_TYPE, 0};

void interrupt()

{HID _InterruptProc(); TMROL = 100;
INTCON.TMROIF = 0; }

void InitUSBdsc()

{Byte_tmp_0[0] = NUM_ENDPOINTS;
Byte_tmp_0[0] = ConfigDescr_wTotallength;
Byte_tmp_0[0] = HID_ReportDesc_len;
Byte_tmp_0O[0] = Low_HID_ReportDesc_len;
Byte_tmp_0[0] = High_HID_ReportDesc_len;
Byte_tmp_0[0] = Low_HID_PACKET_SIZE;

Byte tmp_0[0] = High HID PACKET SIZE;
DeviceDescr;ConfigDescr;InterfaceDescr;HID_Desc
riptor;

EP1_RXDescr;EP1_TXDescr;HID_ReportDesc;
LanglDDescr;ManufacturerDescr;ProductDescr;
StrUnknownDescr; }

void main()

{ADCON1 = OxFF;TRISB = 0; PORTB = 0;
INTCON=0;
INTCON2=0xF5;RCON.IPEN=0;PIE1 =0;PIE2=0;
PIR1=0;

PIR2=0;TOCON = 0x47; TMROL = 100;
INTCON.TMROIE = 1;

TOCON.TMROON = 1; INTCON = OxEO;

Hid Enable(&Read_buffer,
&Write_buffer);Delay_ms(1000);

Delay _ms(1000);for(;;) {num=0;while(num = 4)
{num = Hid_Read();}

if(Read_buffer[0] == 'P' && Read_buffer[1] == '='
&& Read buffer[3] == 'T'){PORTB =
Read buffer[2];}}

Hid_Disable();}

The Software on PC

"ReadEx" (ByVal pVendorlD As Long, ByVal pProduct!D
As Long, ByRef pData As Byte) As Boolean

Declare Function hidWriteEx Lib "mcHID.dII" Alias
"WriteEx" (ByVal pVendorlD As Long, ByVal
pProductID As Long, ByRef pData As Byte) As Boolean
Declare Function hidGetHandle Lib "mcHID.dII" Alias
"GetHandle" (ByVal pVendolD As Long, ByVal
pProduct!D As Long) As Long

Declare Function hidGetVendorID Lib "mcHID.dII"
Alias "GetVendorID" (ByVal pHandle As Long) As Long
Declare Function hidGetProductD Lib "mcHID.dII"
Alias "GetProductlD" (ByVal pHandle As Long) As
Long

Declare Function hidGetVersion Lib "mcHID.dII" Alias
'GetVersion" (ByVal pHandle As Long) As Long
Declare Function hidGetVendorName Lib
"mcHID.dII" Alias "GetVendorName" (ByVal pHandle
As Long, ByVal pText As String, ByVal pLen As Long) As
Long

Declare Function hidGetProductName Lib
'mcHID.dII" Alias "GetProductName" (ByVal pHandle
As Long, ByVal pText As String, ByVal pLen As Long) As
Long

Declare Function hidGetSerialNumber Lib
"mcHID.dII" Alias "GetSerialNumber" (ByVal pHandle
As Long, ByVal pText As String, ByVal pLen As Long) As
Long

Declare Function hidGetlnputReportlength Lib
'mcHID.dII" Alias "GetlnputReportLength” (ByVal
pHandle As Long) As Long

Declare Function hidGetOutputReportlength Lib
'mcHID.dII" Alias "GetOutputReportlength” (ByVal
pHandle As Long) As Long

Declare Sub hidSetReadNotify Lib "mcHID.dII" Alias
'SetReadNotify" (ByVal pHandle As Long, ByVal
pValue As Boolean)

Declare Function hidlsReadNotifyEnabled Lib
'mcHID.dII" Alias "IsReadNotifyEnabled" (ByVal
pHandle As Long) As Boolean

Declare Function hidlsAvailable Lib "mcHID.dII" Alias
"IsAvailable" (ByVal pVendorlD As Long, ByVal
pProductlD As Long) As Boolean

Private Declare Function CallWindowProc Lib
"user32" Alias "CallWindowProcA" (ByVal
IpPrevWndFunc As Long, ByVal hwnd As Long, ByVal
Msg As Long, ByVal wParam As Long, ByVal IParam As
Long) As Long

Private Declare Function SetWindowlong Lib
'user32" Alias "SetWindowLongA" (ByVal hwnd As
Long, ByVal nindex As Long, ByVal dwNewlong As
Long) As Long

Private Const WM_APP = 32768

Private Const GWL_WNDPROC = -4

Private Const WM_HID_EVENT = WM_APP + 200
Private Const NOTIFY_PLUGGED = 1

Private Const NOTIFY_UNPLUGGED = 2

Private Const NOTIFY_CHANGED = 3

Private Const NOTIFY_READ = 4

Private FPrevWinProc As Long

Private FWinHandle As Long

Public Function ConnectToHID(ByVal pHostWin As
Long) As Boolean

FWinHandle = pHostWin

ConnectToHID = hidConnect(FWinHandle)
FPrevWinProc = SetWindowlong(FWinHandle,
GWL _WNDPROC, AddressOf WinProc)

End Function

Public Function DisconnectFromHID() As Boolean
DisconnectFromHID = hidDisconnect
SetWindowlong FWinHandle, GWL _WNDPROC,
FPrevWinProc

End Function

Private Function WinProc(ByVal pHWnd As Long,
ByVal pMsg As Long, ByVal wParam As Long, ByVal
IParam As Long) As Long

If pMsg = WM _HID_EVENT Then

Select Case wParam

Casels = NOTIFY_PLUGGED
MainForm.OnPlugged (IParam)

Case s = NOTIFY_UNPLUGGED
MainForm.OnUnplugged (IParam)

Case Is = NOTIFY_CHANGED
MainForm.OnChanged

Case Is = NOTIFY_READ

MainForm.OnRead (IParam)

End Select End If

WinProc = CallWindowProc(FPrevWinProc, pHWnd,
pMsg, wParam, IParam)

End Function

Dimi, ii, | As Variant

Private Const VendorlD = 4660

Private Const ProductlD = 1

CONSTRUCTION

Private Const BufferInSize = 4

Private Const BufferOutSize = 4

Dim BufferIn(0 To BufferInSize) As Byte

Dim BufferOut(0 To BufferOutSize) As Byte
Private Sub Command1_Click()

Fori=0To 9999

BufferOut(0) = 0 first by is always the report ID
BufferOut(1) = Asc('P") ' first data item (“P”)
BufferOut(2) = Asc('=")'second data item (“-“)
BufferOut(3) = Asc('a")

BufferOut(4) = Asc('T") 'fourth data item (“T”)
hidWriteEx VendorlD, ProductID, BufferOut(0)
Iblstatus = “Turn Right”

Forii=0To 100

DoEvents

Next

BufferOut(0) = 0
BufferOut(1) = Asc('P") 'first data item (“P”)
BufferOut(2) = Asc('=")'second data item (“-*)
BufferOut(3) = Asc('b")

BufferOut(4) = Asc('T") ' fourth data item (“T”)
hidWriteEx VendorlD, ProductD, BufferOut(0)
hidWriteEx VendorID, ProductlD, BufferOut(1)
hidWriteEx VendorlD, ProductID, BufferOut(2)
hidWriteEx VendorlD, ProductID, BufferOut(3)
hidWriteEx VendorlD, ProductID, BufferOut(4)

Forii=0To 100

DoEvents

Next

BufferOut(0) = 0'first by is always the report ID
BufferOut(1) = Asc('P") 'first data item (“P”)
BufferOut(2) = Asc('=")'second data item (“-*)
BufferOut(3) = Asc('d")

BufferOut(4) = Asc('T") 'fourth data item (“T")
hidWriteEx VendorlD, ProductID, BufferOut(0)
hidWriteEx VendorlD, ProductID, BufferOut(1)
hidWriteEx VendorlD, ProductD, BufferOut(2)
hidWriteEx VendorlD, ProductD, BufferOut(3)
hidWriteEx VendorlD, ProductID, BufferOut(4)

Forii=0To 100

DoEvents

Next

BufferOut(0) = O 'first by is always the report ID
BufferOut(1) = Asc('P") 'first data item (“P”)
BufferOut(2) = Asc('=")'second data item (“-“)
BufferOut(3) = Asc('h")

BufferOut(4) = Asc('T") 'fourth data item (“T")
hidWriteEx VendorID, ProductD, BufferOut(0)
hidWriteEx VendorlD, ProductID, BufferOut(1)
hidWriteEx VendorID, ProductD, BufferOut(2)
hidWriteEx VendorlD, ProductD, BufferOut(3)
hidWriteEx VendorlD, Product|D, BufferOut(4)
Forii=0To 100

DoEvents

Next

Next

End Sub

Private Sub Command?2_Click()

Fori=0To 9999

BufferOut(0) = O 'first by is always the report ID
BufferOut(1) = Asc('P") first data item (“P”)
BufferOut(2) = Asc('=")'second data item (“-“)
BufferOut(3) = Asc('h")

BufferOut(4) = Asc('T") 'fourth data item (“T")
HidWriteEx VendorID, ProductID, BufferOut(0)
hidWriteEx VendorID, ProductlD, BufferOut(1)
hidWriteEx VendorlD, ProductID, BufferOut(2)
hidWriteEx VendorlD, ProductID, BufferOut(3)
hidWriteEx VendorlD, Product|D, BufferOut(4)
Iblstatus = "Turn Left”

Forii=0To 100

DoEvents

Next

BufferOut(0) = O'first by is always the report ID
BufferOut(1) = Asc('P") first data item (“P”)
BufferOut(2) = Asc('=")'second data item (“-“)
BufferOut(3) = Asc('d")'01100010

BufferOut(4) = Asc('T") 'fourth data item (“T")
hidWriteEx VendorlD, ProductID, BufferOut(0)
hidWriteEx VendorlD, Product|D, BufferOut(1)
hidWriteEx VendorID, ProductlD, BufferOut(2)
hidWriteEx VendorlD, ProductID, BufferOut(3)
hidWriteEx VendorID, ProductlD, BufferOut(4)
Forii=0To 100

DoEvents

Next

BufferOut(0) = 0'first by is always the report ID
BufferOut(1) = Asc('P") first data item (“P”)
BufferOut(2) = Asc('=")'second data item (“-“)
BufferOut(3) = Asc('b")'01100100

BufferOut(4) = Asc('T") 'fourth data item (“T")
hidWriteEx VendorlD, ProductID, BufferOut(0)
hidWriteEx VendorlD, ProductID, BufferOut(1)
hidWriteEx VendorID, ProductlD, BufferOut(2)
hidWriteEx VendorlD, ProductID, BufferOut(3)
hidWriteEx VendorID, ProductID, BufferOut(4)
Forii=0To 100

DoEvents

Next

BufferOut(0) = O'first by is always the report ID
BufferOut(1) = Asc('P") first data item (“P”)
BufferOut(2) = Asc('=")'second data item (“-“)
BufferOut(3) = Asc('a")'0110 1000

BufferOut(4) = Asc('T") 'fourth data item (“T")
hidWriteEx VendorlD, ProductID, BufferOut(0)
hidWriteEx VendorlD, ProductID, BufferOut(1)
hidWriteEx VendorID, ProductlD, BufferOut(2)
hidWriteEx VendorlD, ProductID, BufferOut(3)
hidWriteEx VendorlD, ProductID, BufferOut(4)
Forii=0To 100

DoEvents

Next

Next

End Sub

Private Sub Command3_Click()

BufferOut(0) = 0'first byte is always the report ID
BufferOut(1) = Asc('P") first data item ("P")
BufferOut(2) = Asc('=")'second data item ('="
BufferOut(3) = Asc('@") 'third data item ('@")
BufferOut(4) = Asc('T") 'fourth data item ('T")
'write the data (don't forget, pass the whole array)...
hidWriteEx VendorlD, Product|D, BufferOut(0)
hidWriteEx VendorlD, ProductID, BufferOut(1)
hidWriteEx VendorlD, ProductD, BufferOut(2)
hidWriteEx VendorlD, Product|D, BufferOut(3)
hidWriteEx VendorlD, ProductD, BufferOut(4)
Iblstatus = "Stop Motor”

End Sub

Private Sub Command4_Click()

Form_Unload (0)

End

End Sub

Private Sub Form_Load|()

ConnectToHID (Me.hwnd)

End Sub

Private Sub Form_Unload(Cancel As Integer)
DisconnectFromHID

End Sub

Public Sub OnPlugged(ByVal pHandle As Long)
If hidGetVendorlD(pHandle) = VendorlD And
hidGetProductlD(pHandle) = ProductID Then
End If

End Sub

If hidGetVendorlD(pHandle) = VendorlD And
hidGetProductiD(pHandle) = ProductID Then
End If

End Sub

Public Sub OnChanged()

Dim DeviceHandle As Long

DeviceHandle = hidGetHandle(VendorID,
ProductID)

hidSetReadNotify DeviceHandle, True

End Sub

Public Sub OnRead(ByVal pHandle As Long)

If hidRead(pHandle, Bufferin(0)) Then

If (Bufferin(1) = Asc('P") And BufferIn(2) = Asc('=")
And BufferIn(4) = Asc('T")) Then

txtreceived = BufferIn(3)

Label1.Caption = Str§(Bufferln(3))

End If

End If

End Sub

Public Sub WriteSomeData()

BufferOut(0) = 0 'first by is always the report ID
BufferOut(1) = 10 'first data item, etc etc
HidWriteEx VendorID, ProductD, BufferOut(0)
End Sub

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

